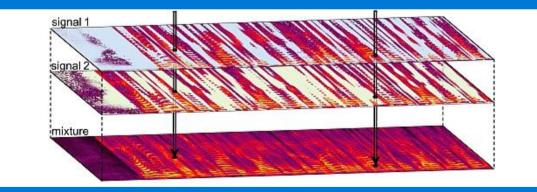
Advances in Cocktail-party Problem

Unsupervised Single-channel Overlapped Speech Recognition

Zhehuai (Tom) Chen

Research Intern chenzhehuai@sjtu.edu.cn

Mentor: Jasha Droppo



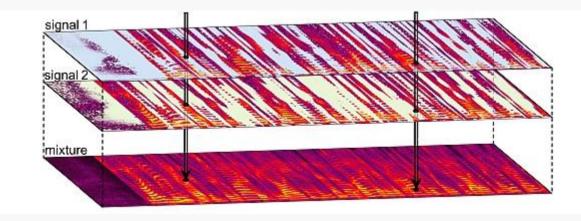
Outline

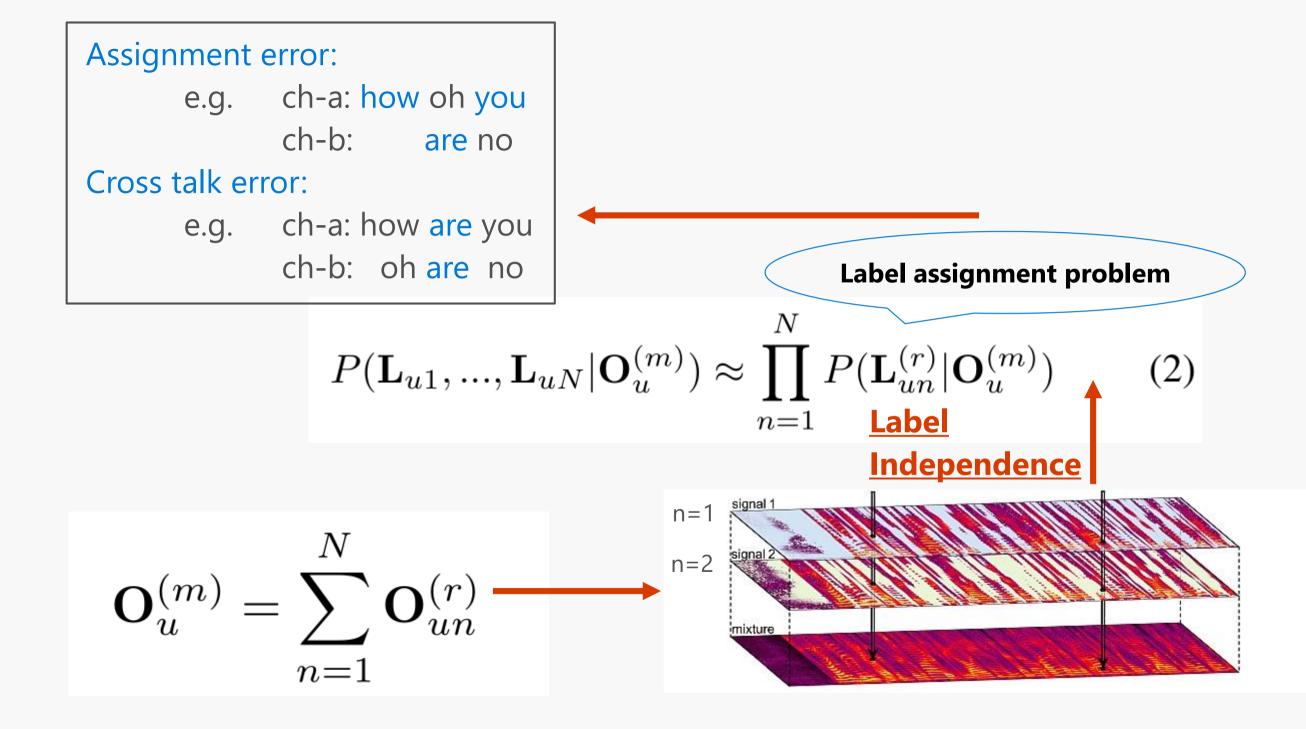
- Cocktail-party problem
- Permutation Invariant Training (baseline)
- Acoustics
 - Modular Initialization
 - Transfer Learning Based Joint Training
 - Temporal Correlation Modeling
- Linguistics
 - Multi-outputs Sequence Discriminative Training
 - Integrating Language Model in Assignment Decision
- Experiments
- Conclusion & Future Directions

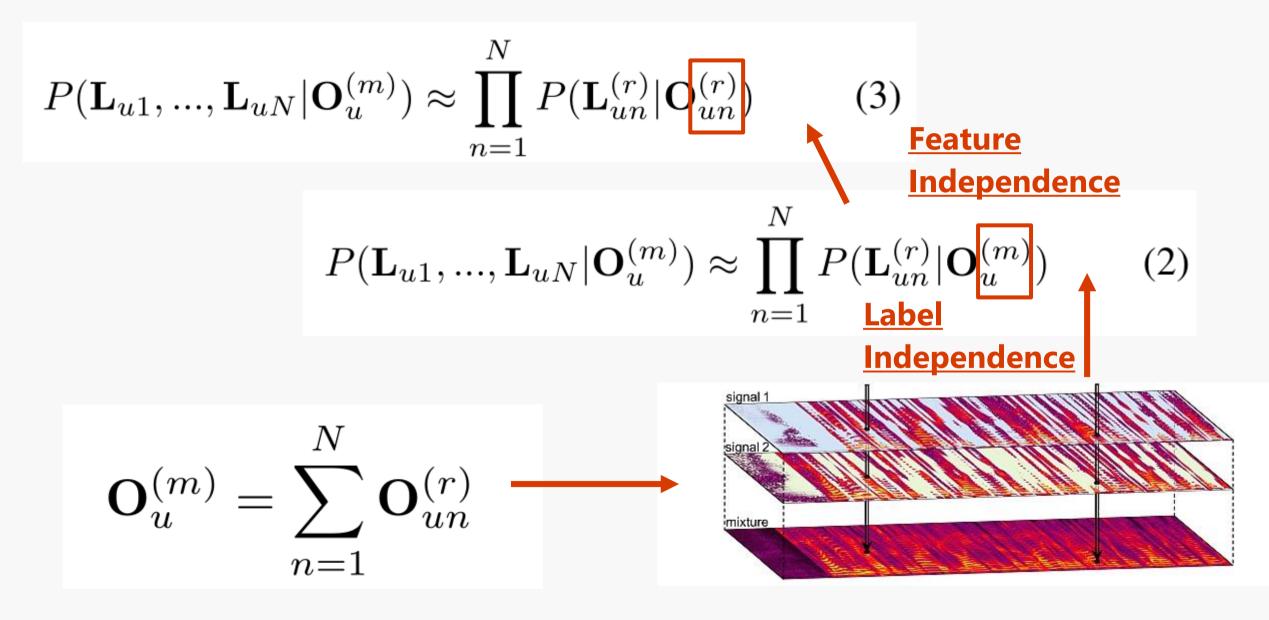
Cocktail-party problem

N=2 $P(\mathbf{L}_{u1},...,\mathbf{L}_{uN}|\mathbf{O}_{u}^{(m)})$

$$\mathbf{O}_{u}^{(m)} = \sum_{n=1}^{N} \mathbf{O}_{un}^{(r)}$$



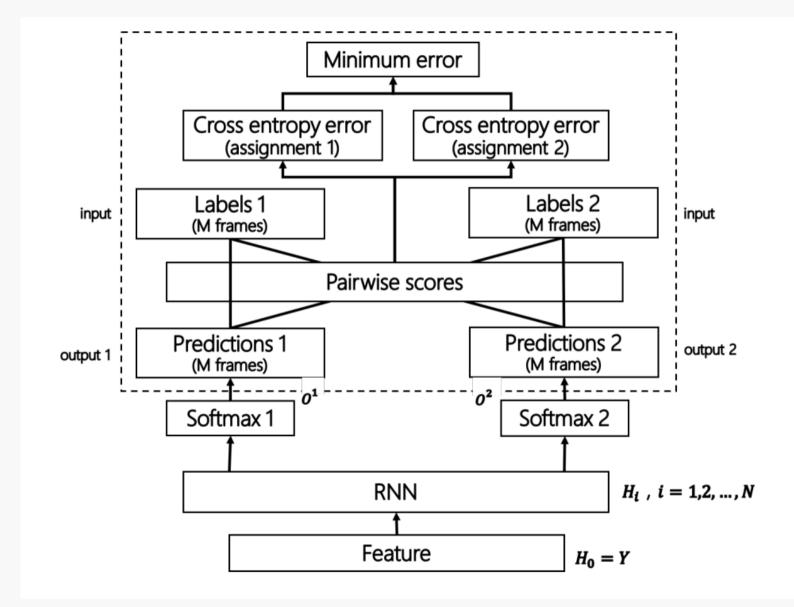




- Cocktail-party problem
 - Label Independence
 - Label assignment problem (hard)
 - Feature Independence
 - Speech separation & recognition are independent (bad)

- Cocktail-party problem
 - Speech Separation + Speech-to-text (feature independence)
 - Before deep learning: Computational Auditory Scene Analysis (CASA)
 - Deep learning based: Deep Clustering (DPCL)
 - NN to produce spectrogram embedding of separated speech
 - Permutation Invariant Training for Speech Separation
 - Joint Modeling (label independence)
 - Permutation Invariant Training for ASR

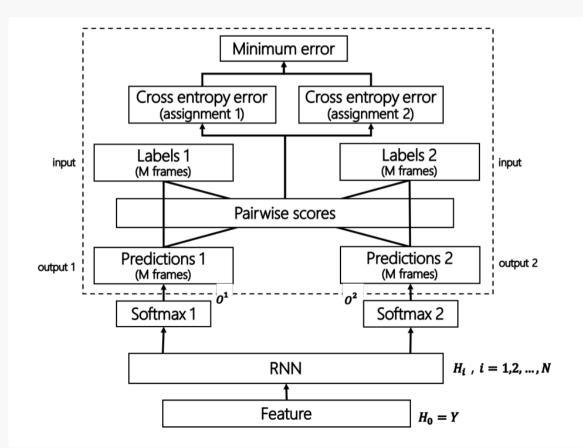
Permutation Invariant Training for ASR



Permutation Invariant Training for ASR

$$P(\mathbf{L}_{u1}, ..., \mathbf{L}_{uN} | \mathbf{O}_{u}^{(m)}) \approx \prod_{n=1}^{N} P(\mathbf{L}_{un}^{(r)} | \mathbf{O}_{u}^{(m)})$$
(2)
$$\mathcal{J}_{\text{CE-PIT}} = \sum_{u} \min_{s' \in \mathbf{S}} \sum_{t} \frac{1}{N} \sum_{n \in [1,N]} CE(l_{utn}^{(s')}, l_{utn}^{(r)})$$
(4)

- Disadvantage
 - Model Complexity (3 hardest problems)
 - Frame CE \rightarrow Utt. Problem
 - No Linguistics
- Result
 - WER 50+% \rightarrow still far road



We propose:

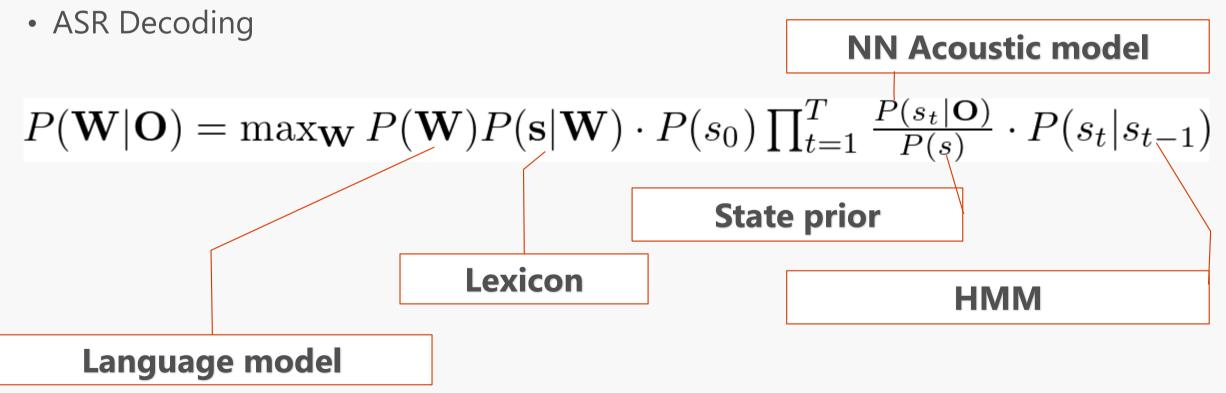
- Acoustics
 - Modular Initialization 4-10%
 - Transfer Learning Based Joint Training 20%
 - Temporal Correlation Modeling 8%
- Linguistics
 - Multi-outputs Sequence Discriminative Training 8%
 - Integrating Language Model in Assignment Decision 4%

- Frame-wise interpreting (swapped segments)
 - Local feature extraction \rightarrow CNN
- Speaker Tracing (no swap)
 - Temporal modeling \rightarrow RNN
- Speech-to-text

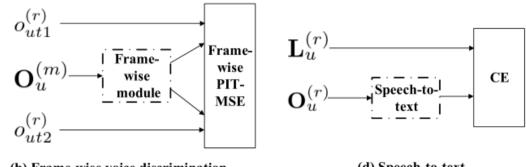
$$\mathcal{J}_{\text{F-PIT}} = \sum_{u} \sum_{t} \frac{1}{N} \min_{s' \in \mathbf{S}} \sum_{n \in [1,N]} MSE(o_{utn}^{(s')}, o_{utn}^{(r)}) \quad (5)$$

$$\mathcal{J}_{\text{U-PIT}} = \sum_{u} \min_{s' \in \mathbf{S}} \sum_{t} \frac{1}{N} \sum_{n \in [1,N]} MSE(o_{utn}^{(s')}, o_{utn}^{(r)})$$
(6)

- Speech-to-text (details)
 - Clean speech Force-alignment by seed GMM-HMM \rightarrow triphone state for each fr.
 - Train NN with the state alignment \rightarrow 9000 senone (clustered triphone state)

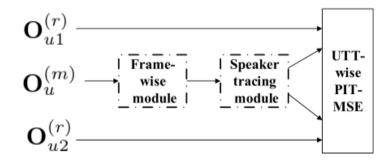


- Progressive joint training
 - Curriculum learning theory
 - The harder task, the larger NN (stacking)

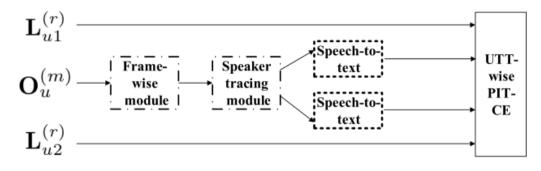


(b) Frame-wise voice discrimination

(d) Speech-to-text

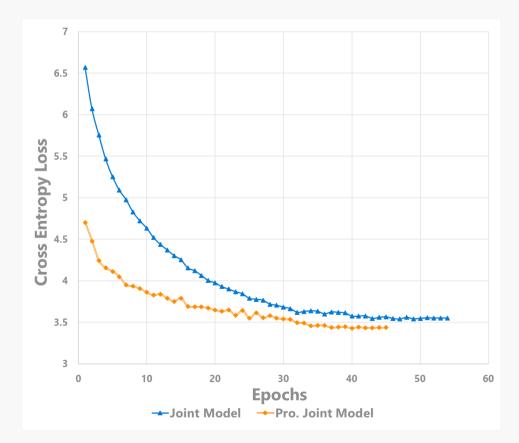


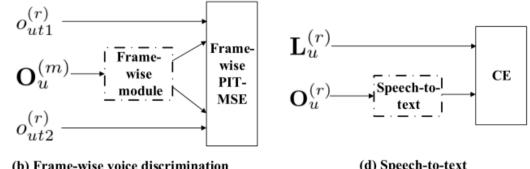
(c) Speaker Tracing



(e) Final Joint Training

- Less Model Complexity
 - Speed of convergence
 - Better local minima



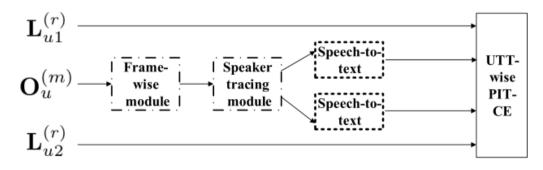


(b) Frame-wise voice discrimination

(d) Speech-to-text

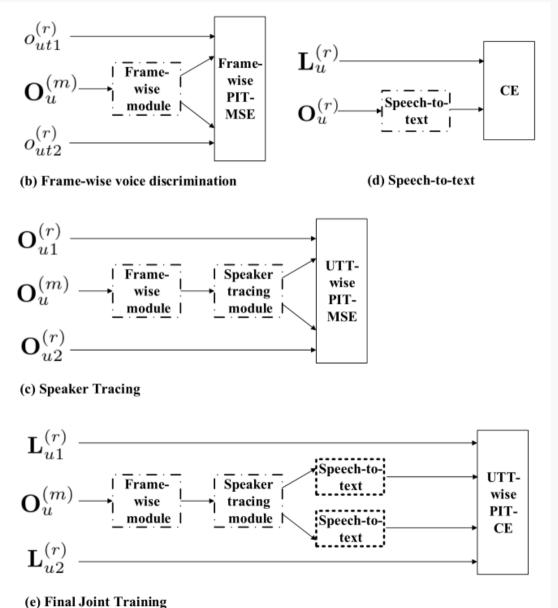


(c) Speaker Tracing



(e) Final Joint Training

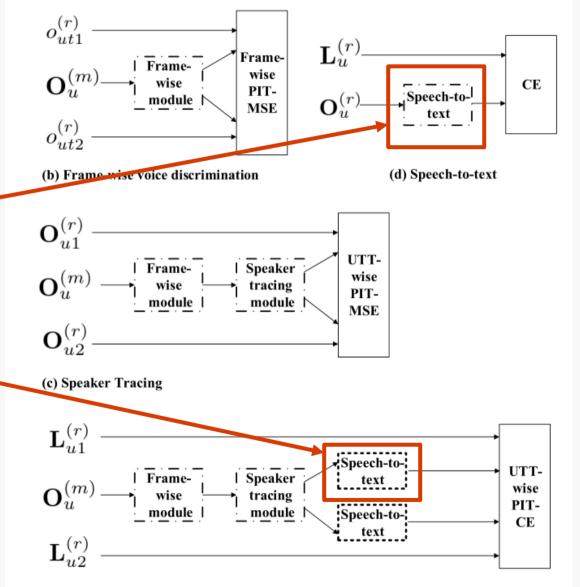
- Less Model Complexity
 - Speed of convergence
 - Better local minima
- Data Efficiency
- Combine with other tech.
 - Sequence disc. training on speech-to-text
 - Integrate LM

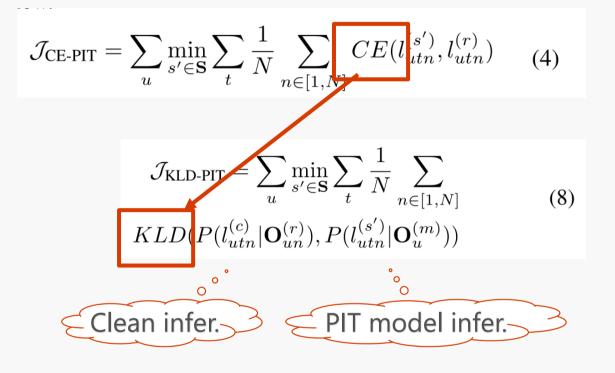


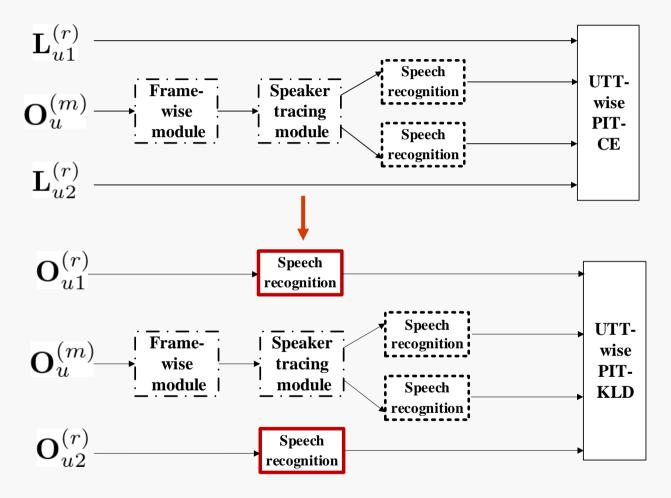
We propose:

- Acoustics
 - Modular Initialization 4-10%
 - Transfer Learning Based Joint Training 20%
 - Temporal Correlation Modeling 8%
- Linguistics
 - Multi-outputs Sequence Discriminative Training 8%
 - Integrating Language Model in Assignment Decision 4%

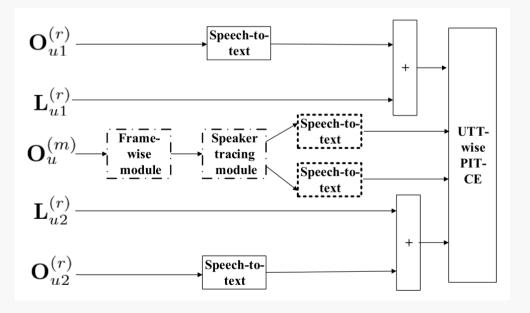
- Transfer Learning
 - To solve the **distribution mismatch** problem in feature space
 - Model \rightarrow speech-to-text module
 - Source domain \rightarrow clean speech
 - Target domain → output of speaker tracing module (enhanced feat.)

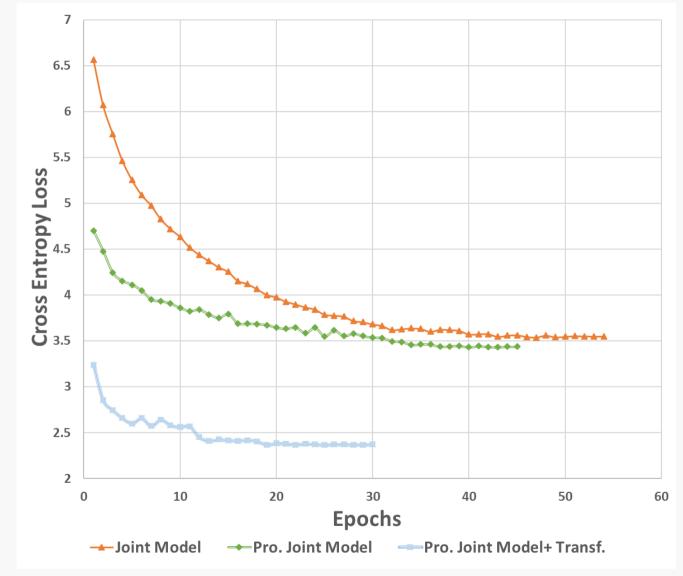




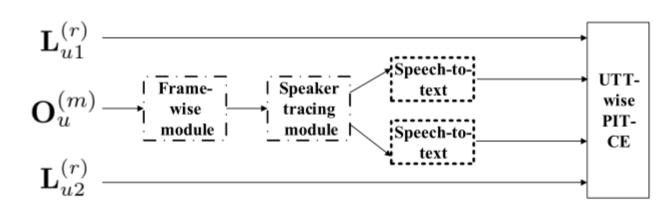


- Advantages
 - Domain adaptation v.s. from scratch
 - Better model convergence





- Further: learn from ensemble
 - Different structure has different abilities in this task
 - e.g. 6 layer in the bottom + 4 layer in the top v.s. 10 layer in the bottom
- Motivation
 - Learn different abilities
 - Model compression



(e) Final Joint Training

We propose:

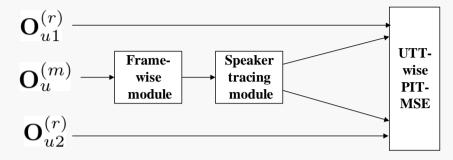
- Acoustics
 - Modular Initialization 4-10%
 - Transfer Learning Based Joint Training 20%
 - Temporal Correlation Modeling 8%
- Linguistics
 - Multi-outputs Sequence Discriminative Training 8%
 - Integrating Language Model in Assignment Decision 4%

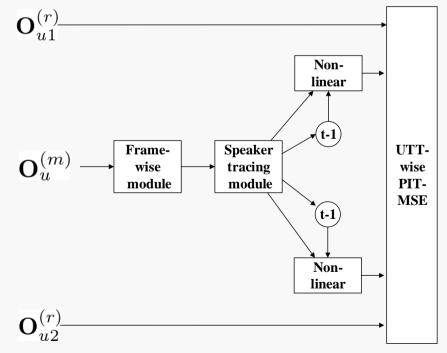
Acoustics – Temporal Correlation Modeling

- Motivation
 - Sequential correlation v.s. stream decorrelation
 - the frequency bins between adjacent frames of the same speaker are correlated

Assignment error: e.g. ch-a: how oh you ch-b: are no

• Last inference can improve current inference





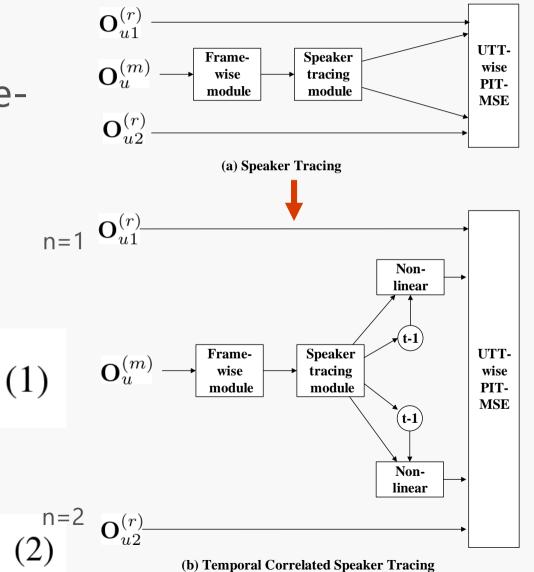
Acoustics – Temporal Correlation Modeling

- Motivation
 - Sequential correlation v.s. stream decorrelation
 - Last inference can improve current inference

1 1

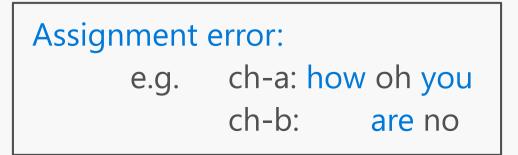
• Sequential labels correlation

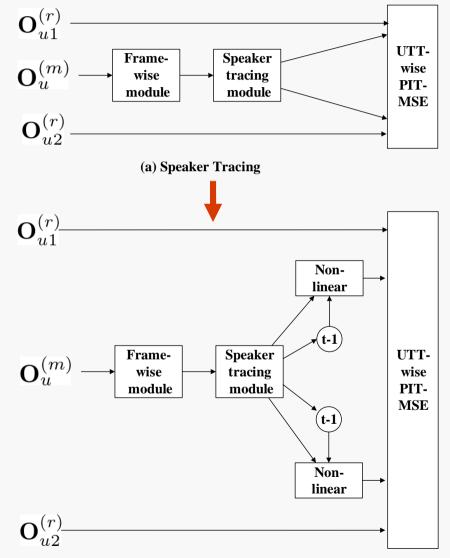
$$o_{utn} = \mathcal{F}_{utn}(\mathbf{O}_{u}^{(m)})$$
$$o_{utn} = \mathcal{F}_{utn}'(\mathbf{O}_{u}^{(m)}, o_{u(t-1)n})$$



Acoustics – Temporal Correlation Modeling

- Motivation
 - Sequential correlation v.s. stream decorrelation
 - last inference can improve current inference
- Sequential labels correlation
- alleviates the assignment & cross talk errors





(b) Temporal Correlated Speaker Tracing

We propose:

- Acoustics
 - Modular Initialization 4-10%
 - Transfer Learning Based Joint Training 20%
 - Temporal Correlation Modeling 8%
- Linguistics
 - Multi-outputs Sequence Discriminative Training 8%
 - Integrating Language Model in Assignment Decision 4%

- Motivation:
 - Both ASR & speaker tracing \rightarrow sequential
 - Implicit integrating language model

(4)

- Motivation:
 - Both ASR & speaker tracing \rightarrow sequential
 - Implicit integrating language model

 $\mathcal{J}_{\text{CE-PIT}} = \sum_{u} \min_{s' \in \mathbf{S}} \sum_{t} \frac{1}{N} \sum_{n \in [1,N]} CE(l_{utn}^{(s')}, l_{utn}^{(r)})$

• Formulation:

$$\mathcal{J}_{\text{SEQ-PIT}} = \sum_{u} \min_{s' \in \mathbf{S}} \frac{1}{N} \sum_{n \in [1,N]} -\mathcal{J}_{\text{SEQ}}(\mathbf{L}_{un}^{(s')}, \mathbf{L}_{un}^{(r)})$$
(12)

 $P(\mathbf{L}_{u1},...,\mathbf{L}_{uN}|\mathbf{O}_{u}^{(m)}) \approx \prod_{n=1}^{N} P(\mathbf{L}_{un}^{(r)}|\mathbf{O}_{u}^{(m)})$ (2)

- Motivation:
 - Both ASR & speaker tracing \rightarrow sequential
 - Implicit integrating language model
- Formulation:

$$\mathcal{J}_{\text{CE-PIT}} = \sum_{u} \min_{s' \in \mathbf{S}} \sum_{t} \frac{1}{N} \sum_{n \in [1,N]} CE(l_{utn}^{(s')}, l_{utn}^{(r)})$$
(4)

$$\mathcal{J}_{\text{SEQ}}(\mathbf{L}_u, \mathbf{L}_u^{(r)}) = \log P(\mathbf{L}_u^{(r)} | \mathbf{O}_u)$$
(11)

$$\mathcal{J}_{\text{LF-MMI}} = \sum_{u} \mathcal{J}_{\text{SEQ}}(\mathbf{L}_{un}^{(s')}, \mathbf{L}_{un}^{(r)})$$
$$= \sum_{u} \log \frac{\sum_{\mathbf{L}_{u}} p(\mathbf{O}_{u} | \mathbf{L}_{u})^{\kappa} P(\mathbf{L}_{u})}{\sum_{\mathbf{L}} p(\mathbf{O}_{u} | \mathbf{L})^{\kappa} P(\mathbf{L})}$$
(13)

$$\mathcal{J}_{\text{SEQ-PIT}} = \sum_{u} \min_{s' \in \mathbf{S}} \frac{1}{N} \sum_{n \in [1,N]} -\mathcal{J}_{\text{SEQ}}(\mathbf{L}_{un}^{(s')}, \mathbf{L}_{un}^{(r)})$$
(12)

• Hypothesis Modeling

$$\mathcal{J}_{\text{LF-MMI}} = \sum_{u} \mathcal{J}_{\text{SEQ}}(\mathbf{L}_{un}^{(s')}, \mathbf{L}_{un}^{(r)})$$
$$= \sum_{u} \log \frac{\sum_{\mathbf{L}_{u}} p(\mathbf{O}_{u} | \mathbf{L}_{u})^{\kappa} P(\mathbf{L}_{u})}{\sum_{\mathbf{L}} p(\mathbf{O}_{u} | \mathbf{L})^{\kappa} P(\mathbf{L})}$$
(13)

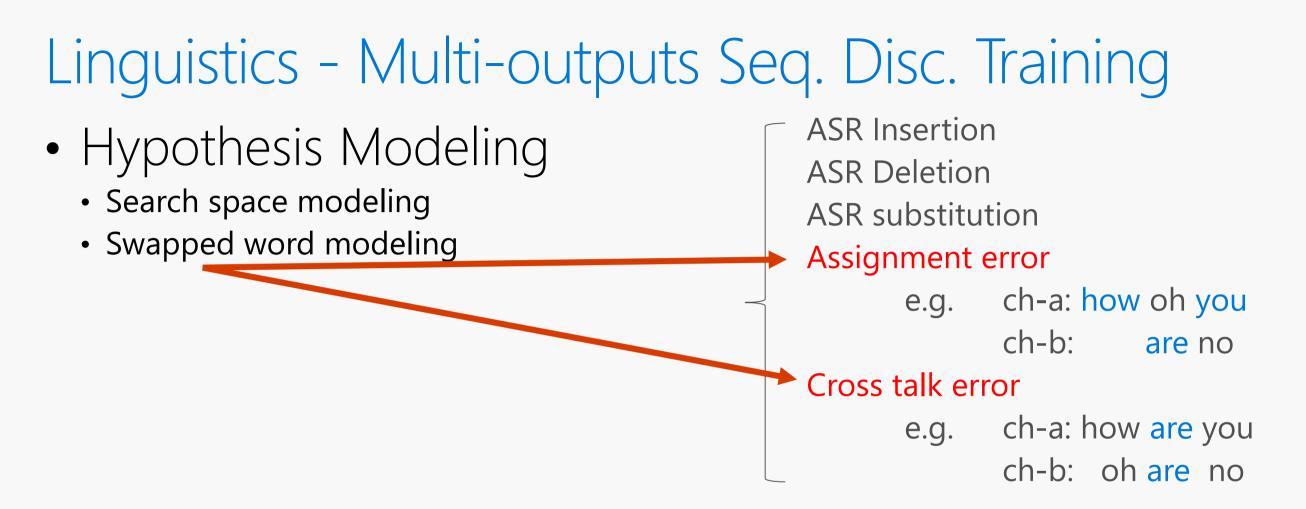
ASR Insertion **ASR** Deletion ASR substitution Assignment error e.g. ch-a: how oh you ch-b: are no Cross talk error ch-a: how are you e.g. ch-b: oh are no

• Hypothesis Modeling

$$\mathcal{J}_{\text{LF-MMI}} = \sum_{u} \mathcal{J}_{\text{SEQ}}(\mathbf{L}_{un}^{(s')}, \mathbf{L}_{un}^{(r)})$$
$$= \sum_{u} \log \frac{\sum_{\mathbf{L}_{u}} p(\mathbf{O}_{u} | \mathbf{L}_{u})^{\kappa} P(\mathbf{L}_{u})}{\sum_{\mathbf{L}} p(\mathbf{O}_{u} | \mathbf{L})^{\kappa} P(\mathbf{L})}$$
(13)

- Search space modeling
 - With lattice
 - Permutation keep changing \rightarrow update lattice each epoch $^{\cup}$
- Lattice-free
 - Pre-pruned senone LM as the search space
 - Both outputs of all utt. share the same denominator graph

ASR Insertion **ASR** Deletion ASR substitution Assignment error e.g. ch-a: how oh you ch-b: are no Cross talk error e.g. ch-a: how are you ch-b: oh are no

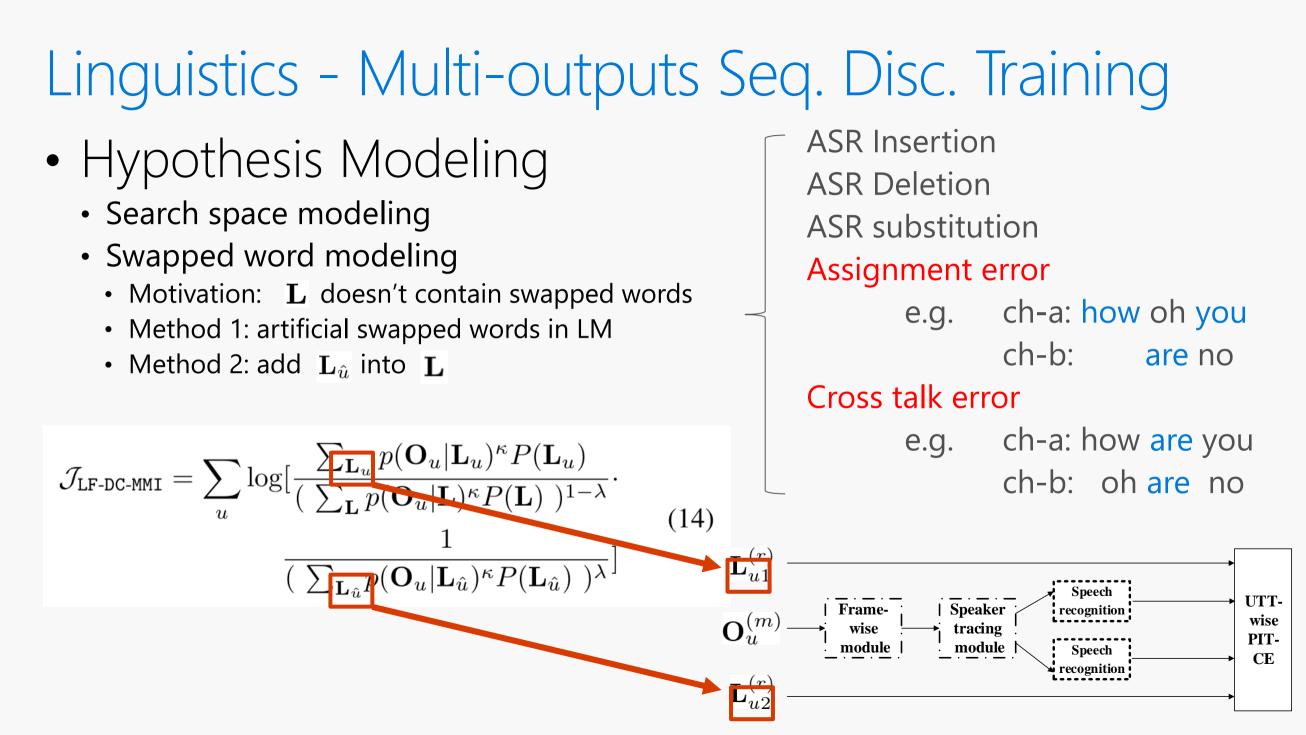


- Hypothesis Modeling
 - Search space modeling
 - Swapped word modeling
 - Motivation: ${\ensuremath{\,{\rm L}}}$ doesn't contain swapped words

$$\mathcal{J}_{\text{LF-MMI}} = \sum_{u} \mathcal{J}_{\text{SEQ}}(\mathbf{L}_{un}^{(s')}, \mathbf{L}_{un}^{(r)})$$
$$= \sum_{u} \log \frac{\sum_{\mathbf{L}_{u}} p(\mathbf{O}_{u} | \mathbf{L}_{u})^{\kappa} P(\mathbf{L}_{u})}{\sum_{\mathbf{L}} p(\mathbf{O}_{u} | \mathbf{L})^{\kappa} P(\mathbf{L})}$$
(13)

ASR Insertion **ASR** Deletion ASR substitution Assignment error ch-a: how oh you e.g. ch-b: are no Cross talk error ch-a: how are you e.g. ch-b: oh are no

Linguistics - Multi-outputs Seq. Disc. Training **ASR** Insertion Hypothesis Modeling **ASR** Deletion Search space modeling ASR substitution Swapped word modeling Assignment error • Motivation: L doesn't contain swapped words ch-a: how oh you e.g. Method 1: artificial swapped words in LM ch-b: are no • In LM generation, make texts: Swapped senone segments Cross talk error ch-a: how are you e.g. ch-b: oh are no



- Hypothesis Modeling
 - Search space modeling
 - Swapped word modeling
 - Motivation: ${\ensuremath{\,\mathbf{L}}}$ doesn't contain swapped words
 - Method 1: artificial swapped words in LM
 - Method 2: add $\mathbf{L}_{\hat{u}}$ into \mathbf{L}

$$\mathcal{J}_{\text{LF-DC-MMI}} = \sum_{u} \log \left[\frac{\sum_{\mathbf{L}_{u}} p(\mathbf{O}_{u} | \mathbf{L}_{u})^{\kappa} P(\mathbf{L}_{u})}{\left(\sum_{\mathbf{L}} p(\mathbf{O}_{u} | \mathbf{L})^{\kappa} P(\mathbf{L}) \right)^{1-\lambda}} \cdot \frac{1}{\left(\sum_{\mathbf{L}_{\hat{u}}} p(\mathbf{O}_{u} | \mathbf{L}_{\hat{u}})^{\kappa} P(\mathbf{L}_{\hat{u}}) \right)^{\lambda}} \right]$$
(14)

ASR Insertion **ASR** Deletion ASR substitution Assignment error e.g. ch-a: how oh you ch-b: are no Cross talk error e.g. ch-a: how are you ch-b: oh are no

 $\sum p(\mathbf{O}_{\mu}|\mathbf{L}_{\hat{\alpha}})^{\kappa}P(\mathbf{L}_{\hat{\alpha}}))^{\lambda}$

- Hypothesis Modeling
 - Search space modeling
 - Swapped word modeling
 - Motivation: ${\ensuremath{\,{\rm L}}}$ doesn't contain swapped words
 - Method 1: artificial swapped words in LM • Method 2: add T into T $\int_{\mathbb{R}^{p} \text{ cont}} = \sum_{u} \log \left[\sum_{L_{u} p(O_{u} | \mathbf{L}_{u})^{c} P(\mathbf{L}_{u})} \right]$
 - Method 2: add $\mathbf{L}_{\hat{u}}$ into \mathbf{L}
 - Method 3: boost errors of $\mathbf{L}_{\hat{u}}$ (bMMI)

$$\mathcal{J}_{\text{LF-DC-bMMI}} = \sum_{u} \log \left[\sum_{\mathbf{L}_{u}} p(\mathbf{O}_{u} | \mathbf{L}_{u})^{\kappa} P(\mathbf{L}_{u}) \right]$$

$$\frac{1}{\sum_{\mathbf{L}} p(\mathbf{O}_{u} | \mathbf{L})^{\kappa} P(\mathbf{L}) e^{-b \max_{\mathbf{L}_{u}} A(\mathbf{L}, \mathbf{L}_{u}) - \hat{b} \max_{\mathbf{L}_{\hat{u}}} (1 - A(\mathbf{L}, \mathbf{L}_{\hat{u}}))} \right]$$
(16)

ASR Insertion **ASR** Deletion ASR substitution Assignment error e.g. ch-a: how oh you ch-b: are no Cross talk error ch-a: how are you e.g. ch-b: oh are no

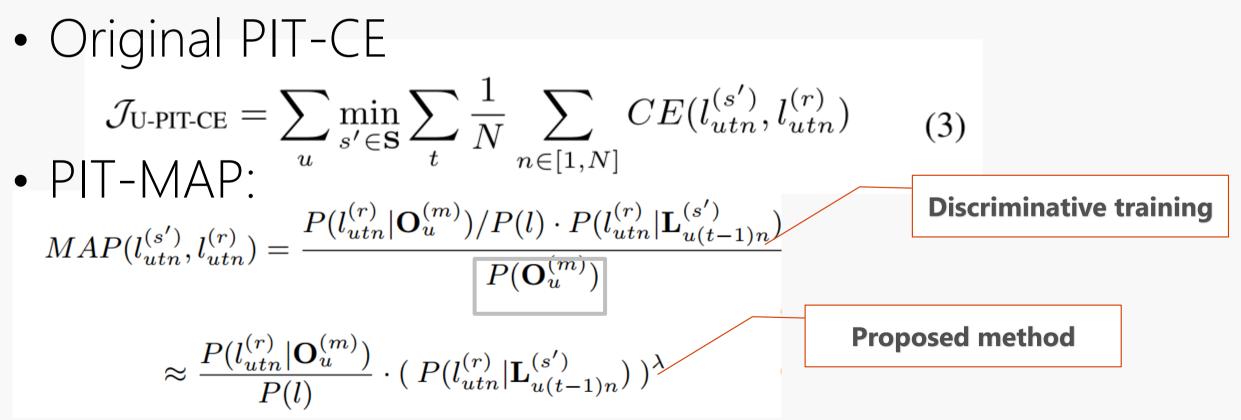
We propose:

- Acoustics
 - Modular Initialization 4-10%
 - Transfer Learning Based Joint Training 20%
 - Temporal Correlation Modeling 8%
- Linguistics
 - Multi-outputs Sequence Discriminative Training 8%
 - Integrating Language Model in Assignment Decision 4%

- Motivation:
 - Improve assignment decision by combining LM in training stage
 - Still train a **pure** acoustic model and integrate it with more powerful word level language model in evaluation stage
- Original PIT-CE

$$\mathcal{J}_{\text{U-PIT-CE}} = \sum_{u} \min_{s' \in \mathbf{S}} \sum_{t} \frac{1}{N} \sum_{n \in [1,N]} CE(l_{utn}^{(s')}, l_{utn}^{(r)})$$
(3)

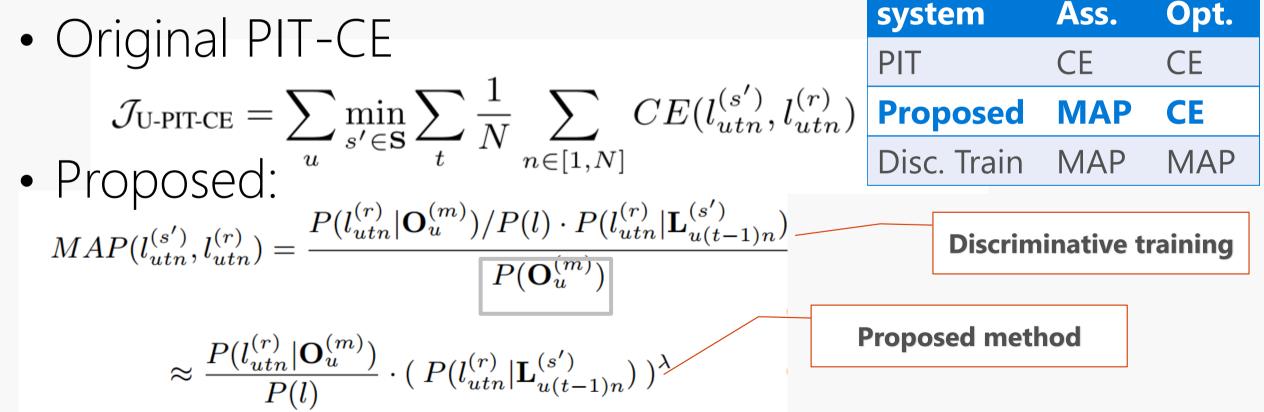
- Motivation:
 - Improve assignment decision by combining LM in training stage
 - Still train a **pure** acoustic model and integrate it with more powerful word level language model in evaluation stage



- Motivation:
 - Improve assignment decision by combining LM in training stage
 - Still train a pure acoustic model and integrate it with more powerful word level language model in evaluation stage
- Original PIT-CE $\mathcal{J}_{\text{U-PIT-CE}} = \sum_{u} \min_{s' \in \mathbf{S}} \sum_{t} \frac{1}{N} \sum_{n \in [1,N]} CE(l_{utn}^{(s')}, l_{utn}^{(r)})$ (3) $\rightarrow MAP(\cdot)$ $CE(\cdot)$ **PIT-trained AM** • Proposed: $MAP(l_{utn}^{(s')}, l_{utn}^{(r)}) = \frac{P(l_{utn}^{(r)} | \mathbf{O}_{u}^{(m)})}{P(l)} \cdot (P(l_{utn}^{(r)} | \mathbf{L}_{u(t-1)n}^{(s')}))^{\lambda}$ (4)

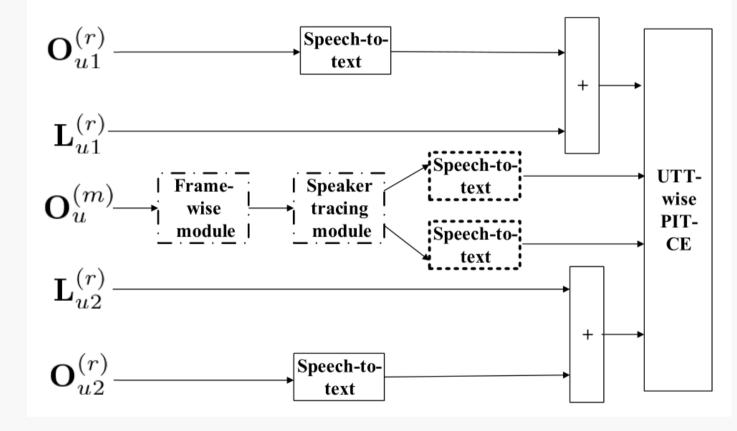
- Motivation:
 - Improve assignment decision by combining LM in training stage
 - Still train a pure acoustic model and integrate it with more powerful word level language model in evaluation stage
- Original PIT-CE $\mathcal{J}_{\text{U-PIT-CE}} = \sum_{u} \min_{s' \in \mathbf{S}} \sum_{t} \frac{1}{N} \sum_{n \in [1,N]} CE(l_{utn}^{(s')}, l_{utn}^{(r)})$ (3) $CE(\cdot) \longrightarrow MAP(\cdot)$ Senone level NNLM • Proposed: $MAP(l_{utn}^{(s')}, l_{utn}^{(r)}) = \frac{P(l_{utn}^{(r)} | \mathbf{O}_u^{(m)})}{P(l)} \cdot (P(l_{utn}^{(r)} | \mathbf{L}_{u(t-1)\underline{n}}^{(s')}))^{\lambda}$ (4)

- Motivation:
 - Improve assignment decision by combining LM in training stage
 - Still train a pure acoustic model and integrate it with more powerful word level language model in evaluation stage



Brief Summary

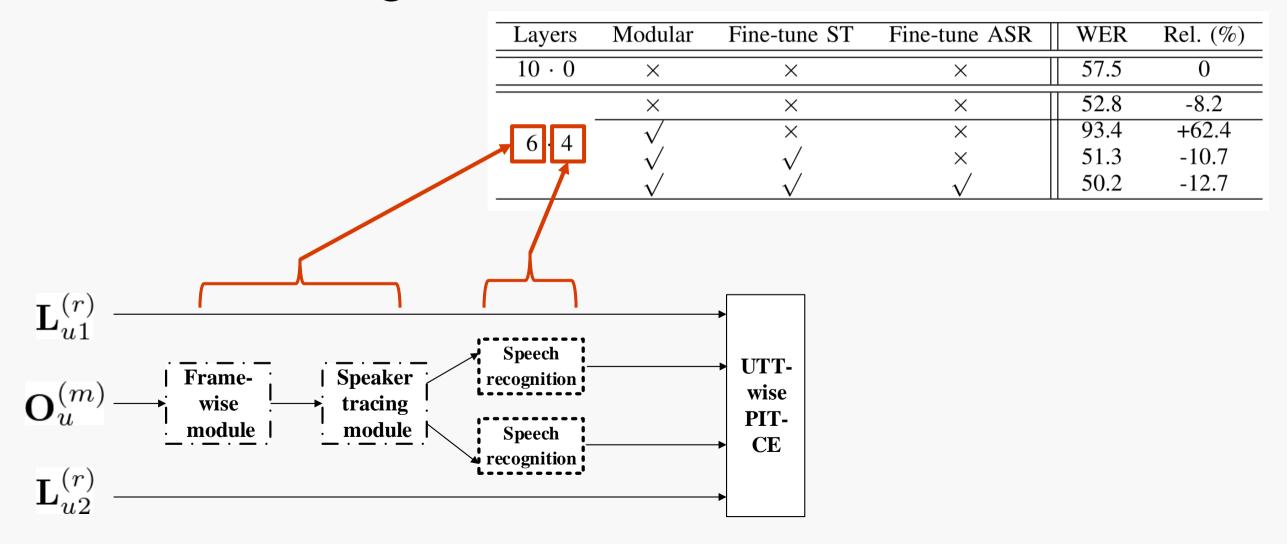
- Acoustics
 - Modular Initialization
 - Transfer Learning Based Joint
 Training
 - Temporal Correlation Modeling
- Linguistics
 - Multi-outputs Sequence
 Discriminative Training
 - Integrating Language Model in Assignment Decision



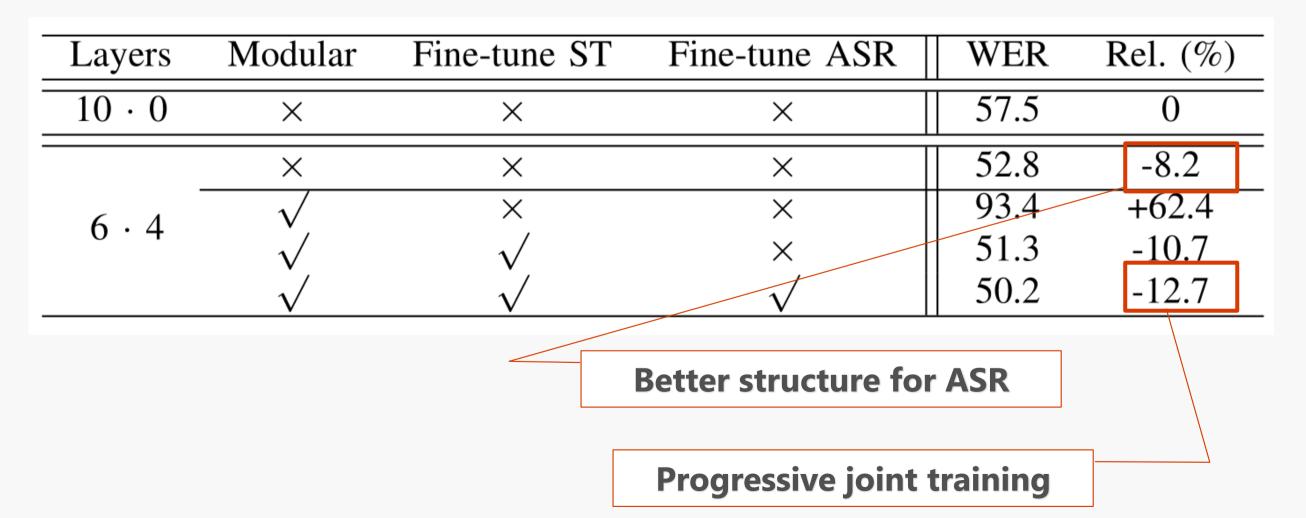
Experiments

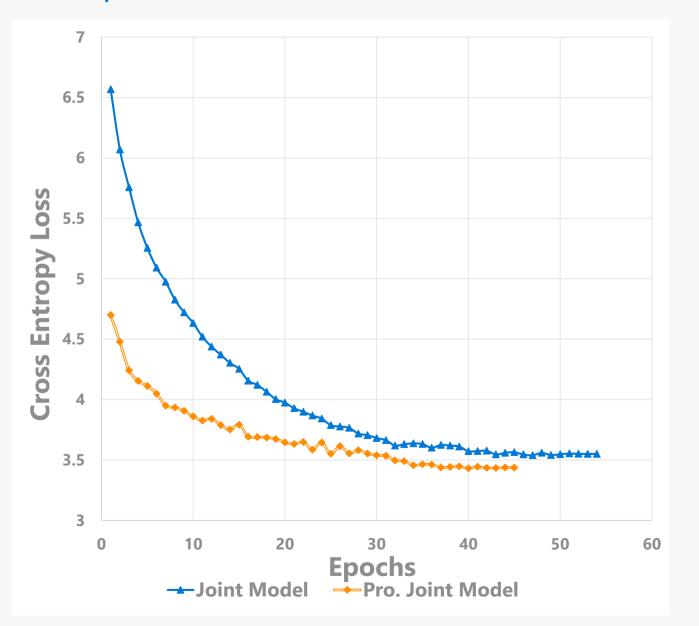
- Setup:
 - Artificial overlapped SWBD 300 \rightarrow 150 (\rightarrow 50); hub5e-swb 1831 \rightarrow 915 utts
 - 9000 senones; clean speech alignment;
 - Baseline 1: 10L 768 cells BLSTM PIT-ASR model
 - Baseline 2: 6L 768 cells BLSTM PIT-SS + 4L 768 cells BLSTM ASR
 - All with large # of params. in the original paper

• Better model generalization

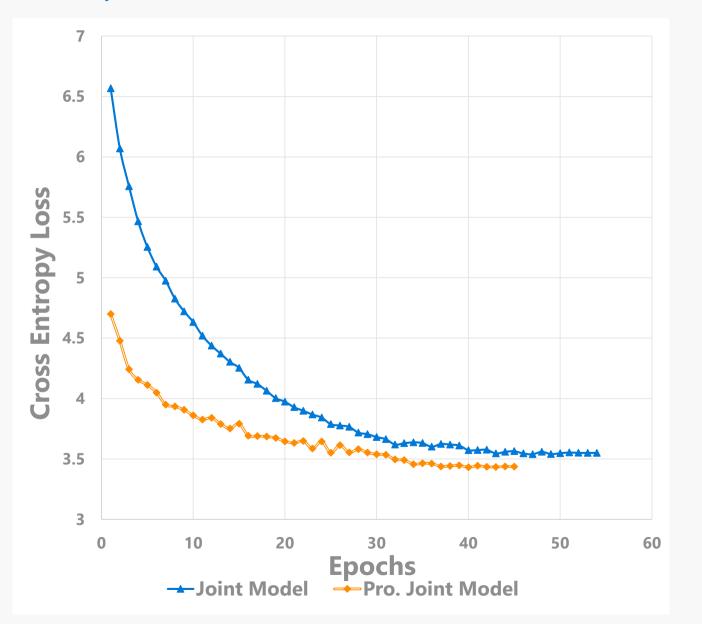


Better model generalization





- why
 - Better starting point
 - Better convergence



- why
 - Better starting point
 - Better convergence

- Better structure
 - Frame-wise interpreting→CNN
 - Speaker Tracing→BLSTM
 - ASR→BLSTM

Layers	Modular	teacher	WER	Rel. (%)
	×	×	57.5	0
10.0	×	$9.1 \oplus 6.4 \oplus 3.7$	55.0	-4.4
	×	clean	52.5	-8.7
	×	×	52.8	-8.2
6 1	×	clean	47.1	-18.0
6.4		clean	38.9	-32.4
		MMI clean	35.8	-37.7

Learn fr	om clean tead	cher		
Layers	Modular	teacher	WER	Rel. (%)
	×	×	57.5	0
10.0	×	$9.1 \oplus 6.4 \oplus 3.7$	55.0	-4.4
	×	clean	52.5	-8.7
	×	×	52.8	-8.2
6.4	\times	clean	47.1	-18.0
0.4	$\overline{}$	clean	38.9	-32.4
	\checkmark	MMI clean	35.8	-37.7

Learn from clean teacher + modularization

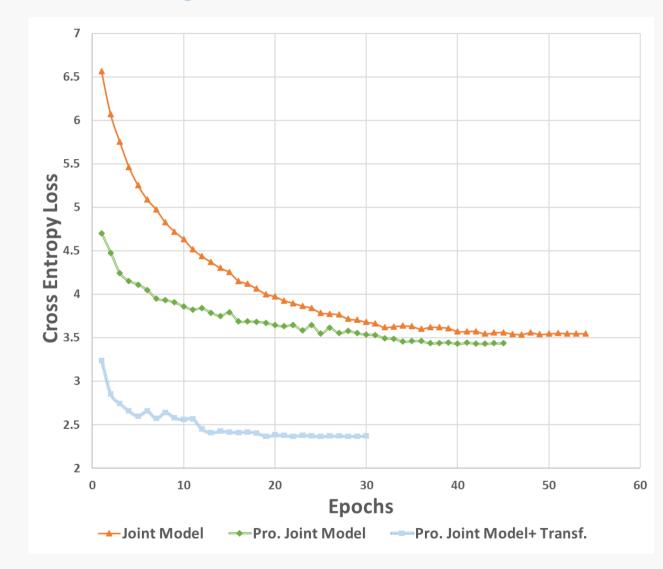
Layers	Modular	teacher	WER	Rel. (%)
	×	×	57.5	0
10.0	×	$9.1 \oplus 6.4 \oplus 3.7$	55.0	-4.4
	×	clean	52.5	-8.7
	X	X	52.8	-8.2
6 1	×	clean	47.1	-18.0
6.4		clean	38.9	-32.4
	$\overline{}$	MMI clean	35.8	-37.7

Le	arn from cle	ean teacher +	modularization • •	ASR From scratch v.s.			
	Domain adaptation						
	Layers	Modular	teacher	WER	Rel. (%)	_	
		×	×	57.5	0		
	10.0	×	$9.1 \oplus 6.4 \oplus 3.7$	55.0	-4.4		
		X	clean	52.5	-8.7		
		×	×	52.8	-8.2		
	6.4	×	clean	47.1	-18.0		
	0.4		clean	38.9	-32.4		
		$\overline{}$	MMI clean	35.8	-37.7		

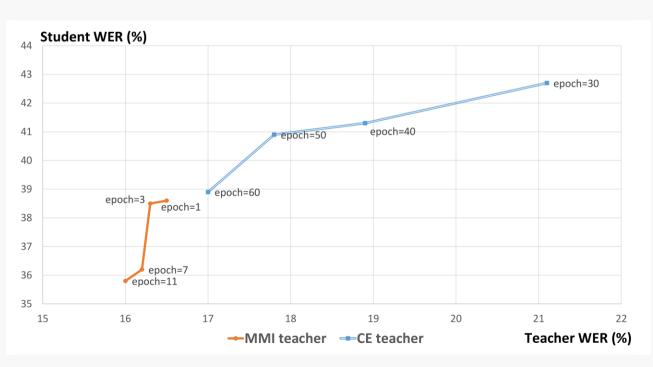
	learn from	n MMI teacher		
Layers	Modular	teacher	WER	Rel. (%)
10.0	× ×	$\overset{\times}{9\cdot 1 \oplus 6\cdot 4 \oplus 3\cdot 7}$	57.5 55.0	0 -4.4
	× ×	clean ×	52.5 52.8	-8.7
6.4	\times $$ $$	clean clean MMI clean	47.1 38.9 35.8	-18.0 -32.4 -37.7

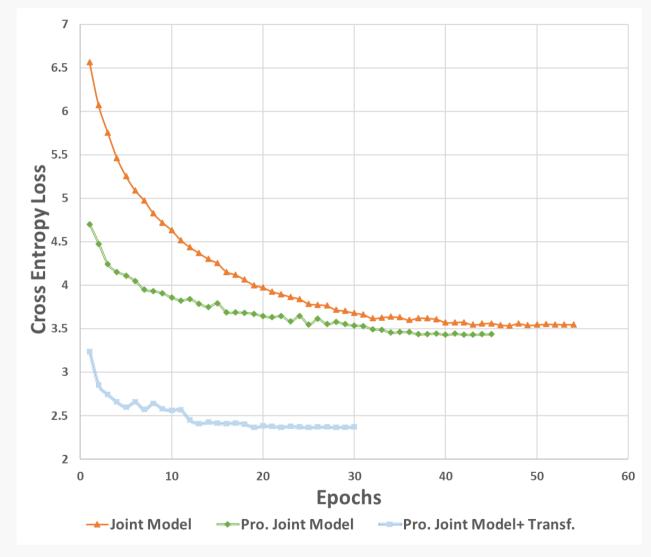
Learn	from ensemb	le		
Layers	Modular	teacher	WER	Rel. (%)
	×	×	57.5	0
10.0	×	$9.1 \oplus 6.4 \oplus 3.7$	55.0	-4.4
	×	clean	52.5	-8.7
	×	×	52.8	-8.2
6.4	×	clean	47.1	-18.0
0.4		clean	38.9	-32.4
		MMI clean	35.8	-37.7

- Why
 - Even better starting point & model convergence



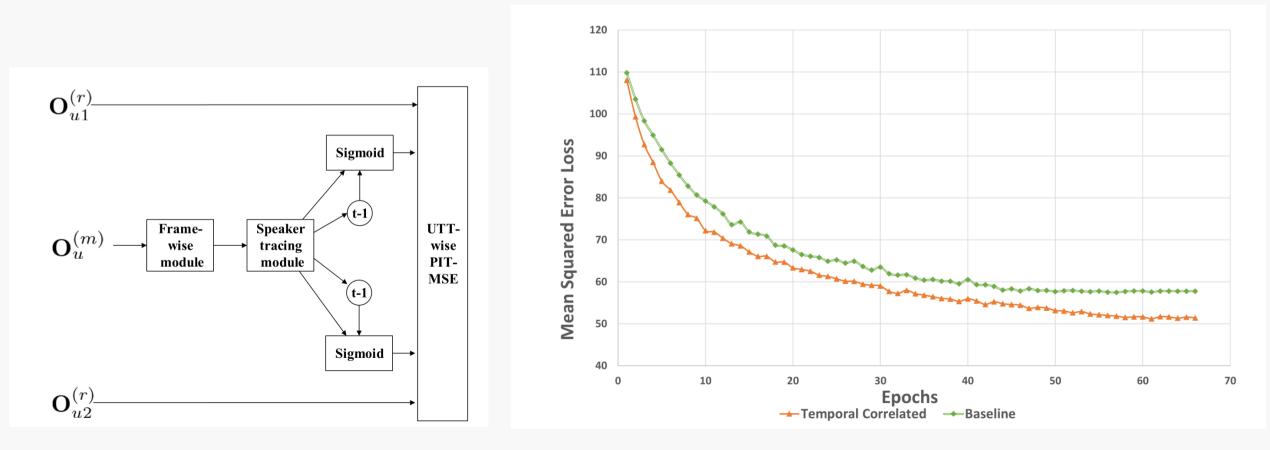
- Why
 - Even better starting point & model convergence
- Relation between Tea. & Stu.





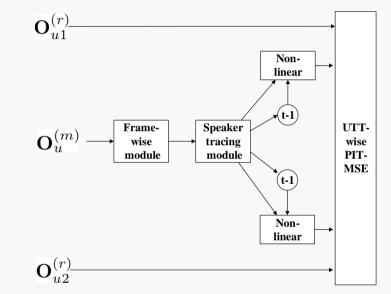
Experiments – Temporal Correlated

- Baseline: modularization + clean teacher WER=38.9
- Improve in Speaker Tracing:



Experiments – Temporal Correlated

- Baseline: modularization + clean teacher WER=38.9
- Improve in Speaker Tracing
- WER improve after joint training



Temporal Correlated	# of Sigmoid	WER	Rel. (%)
×	0	38.9	0
	0	37.5	-3.6
	1	35.8 36.7	-8.0
·	2	36.7	-5.7

Experiments – Seq. Disc. Training							
6.1% & 7.9% improver clean teacher	6.1% & 7.9% improvement on						
Performance	Summary in SWBD 150 Hours	Dataset					
Neural network	Model	WER	Rel. (%)				
10.0 BLSTM	PIT-CE	42.2	0				
	progressive joint training	41.0	-2.9				
6.4 BLSTM	+ clean teacher	32.8	-22.3				
	30.8	-27.0					
	progressive joint training	39.4	-6.6				
1 LACE + 5.4 BLSTM	+ clean teacher	30.4	-27.9				
	+ LF-DC-bMMI	28.0	-33.6				

Experiments – Seq. Disc. Training

Also improve MMI teacher

Performance Summary in SWBD 50 Hours Dataset

Neural network	Model	WER	Rel. (%)
10.0 BLSTM	PIT-CE	57.5	0
6·4 BLSTM	progressive joint training	50.2	-13
	+ clean teacher	38.9	-32.4
	+ MMI clean teacher	35.8	-37.7
	+ LF-DC-bMMI	35.2	-38.8
1 LACE + 5·4 BLSTM	progressive joint training	47.4	-17.5
	+ clean teacher	36.0	-37.4
	+ MMI clean teacher	34.6	-39.8
	+ LF-DC-bMMI	34.0	-40.9

Experiments – LM Integration

• Baseline: modularization + clean teacher WER=38.9

$$\mathcal{J}_{\text{U-PIT-CE}} = \sum_{u} \min_{s' \in \mathbf{S}} \sum_{t} \frac{1}{N} \sum_{n \in [1,N]} CE(l_{utn}^{(s')}, l_{utn}^{(r)}) \quad (3)$$

$$CE(\cdot) \longrightarrow MAP(\cdot)$$

$$MAP(l_{utn}^{(s')}, l_{utn}^{(r)}) = \frac{P(l_{utn}^{(r)} | \mathbf{O}_{u}^{(m)})}{P(l)} \cdot (P(l_{utn}^{(r)} | \mathbf{L}_{u(t-1)n}^{(s')}))^{\lambda} \quad (4)$$

$$Assign. \quad \text{Opt.} \quad \begin{array}{c} 50 \text{ hours} & 150 \text{ hours} \\ \text{WER} & \text{Rel.} (\%) & \text{WER} & \text{Rel.} (\%) \\ \hline CE & CE & 38.9 & 0 & 32.8 & 0 \\ \hline MAP & CE & 37.3 & -4.1 & 30.9 & -5.8 \end{array}$$

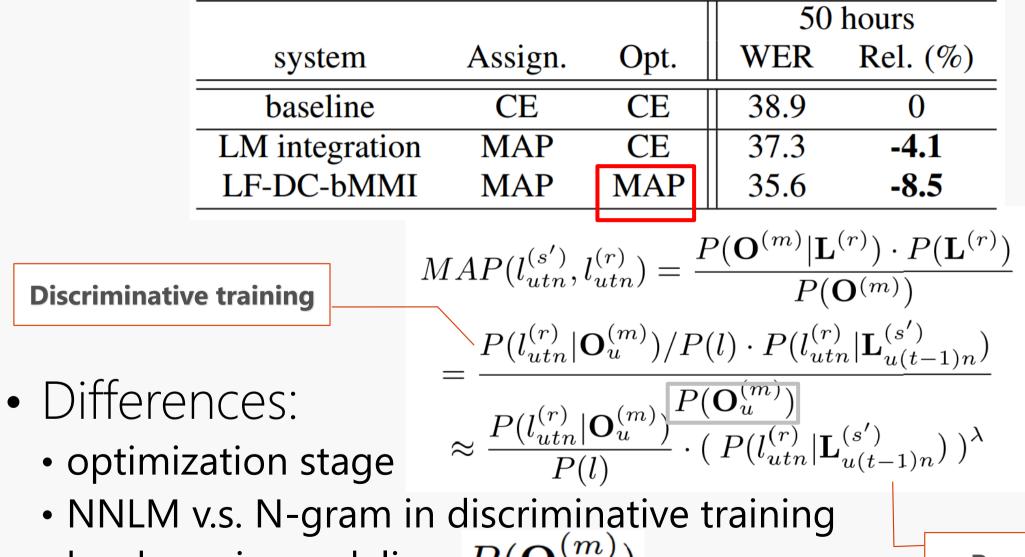
Experiments – LM Integration

• Baseline: modularization + clean teacher WER=32.8

$MAP(l_{utn}^{(s')}, l_{utn}^{(r)}) = \frac{P(l_{utn}^{(r)} \mathbf{O}_u^{(m)})}{P(l)} \cdot (P(l_{utn}^{(r)} \mathbf{L}_{u(t-1)n}^{(s')}))^{\lambda}$						(4)	
		50	hours	150) hours		
Assign.	Opt.	WER	Rel. (%)	WER	Rel. (%	6)	
CE	CE	38.9	0	32.8	0		
MAP	CE	37.3	-4.1	30.9	-5.8		

- with more data, the improvement becomes larger
 - AM becomes stronger
 - Assignment decision is not over-fit to the LM

Experiments – Compare with disc. training



• hardness in modeling $P(\mathbf{O}_{u}^{(m)})$

Proposed method

Experiments – Combination

Method	WER	Rel. (%)
baseline	38.9	0
+ Temporal Correlated	35.8	-8.0
+ LM Integration	34.4	-11.5
+ LF-DC-bMMI	31.6	-18.8

• Operate in different levels \rightarrow can be combined

Experiments – Combination

Method	WER	Rel. (%)
baseline	38.9	0
+ Temporal Correlated	35.8	-8.0
+ LM Integration	34.4	-11.5
+ LF-DC-bMMI	31.6	-18.8
+ MMI clean teacher	35.8	-8.0
+ LF-DC-bMMI	35.2	-9.5

- Operate in different levels \rightarrow can be combined
- Better than only utilize TS + discriminative training

Experiments – Summary

- 50 hours
 - WER: 57.5 → 34.0 (-40.9%)
- 150 hours
 - WER: 42.2 → 28.0 (-33.6%)
- *In WSJ, best DPCL sys.
 - WER: 30.8 (joint tr.)
 - WER: 29.7 (Spatial feat. No joint tr.) (Although there are lots of diff: corpus, SNR, clean ASR perf...)

Performance Summary in SWBD 50 Hours Dataset

Neural network	Model	WER	Rel. (%)
10.0 BLSTM	PIT-CE	57.5	0
6.4 BLSTM	progressive joint training	50.2	-13
	+ clean teacher	38.9	-32.4
	+ MMI clean teacher	35.8	-37.7
	+ LF-DC-bMMI	35.2	-38.8
1 LACE + 5·4 BLSTM	progressive joint training	47.4	-17.5
	+ clean teacher	36.0	-37.4
	+ MMI clean teacher	34.6	-39.8
	+ LF-DC-bMMI	34.0	-40.9

Performance Summary in SWBD 150 Hours Dataset

Neural network	Model	WER	Rel. (%)
10.0 BLSTM	PIT-CE	42.2	0
6.4 BLSTM	progressive joint training	41.0	-2.9
	+ clean teacher	32.8	-22.3
	+ LF-DC-bMMI	30.8	-27.0
1 LACE + 5·4 BLSTM	progressive joint training	39.4	-6.6
	+ clean teacher	30.4	-27.9
	+ LF-DC-bMMI	28.0	-33.6

Experiments – Example 50hrs (F-F)

- Clean ASR (90+WER)
- 1 PIT-CE
- 2 Transf.
- 3 +MMI teacher
- 4 +seq. disc. tr.

1 id: (sw_4776_a-006) 2 Labels: <> 3 File: sw_4776 4 Channel: a
REF: i just ** **** GO WALKING AND I USUALLY TRY TO go for about an hour (e-) and i HAVE TRIED DOING IT EVERY DAY BUT i mean some times I do NOT EVEN DO IT ONCE DURING THE WEEK but you know MOST OF THE TIME I
7 8 Scores: (#C #S #D #I) 18 22 11 4 9 HYP: i just SO LONG AS THEY HAVE COME HERE AS MUCH AS WE go for about an hour and i **** **** WAS READING IN ANY WAY i mean some times * do *** IT LONGER THAN A WOMAN AND STUFF but you know **** ** *** **** 10 Eval: I I I I S S S S S S D D S S S S S D D D D
¹¹ ¹² Scores: (#C #S #D #I) 34 7 10 1 2 Transf.
13 HYP: i just go OUT YOU and i usually *** HAVE go for about an hour *** i **** tried ***** IN every day but i mean some times i do not even do it once during the week but you know **** *** **** **** ONCE WE TURN DEFINITE 14 Eval: I S D S D D D D S S S S
15 16 Scores: (#C #S #D #I) 36 9 6 2 17 HYP: i just go OUT HERE and i HAD LIKE to HAVE go for about an hour *** i **** AM TRYING every day but i mean some times i do not even do it once during the week but you know **** *** WHAT REALLY TRYING to get 18 Eval: I S S S I D D D S S 19 D D S S
4 + seq. disc. tr. 2 Scores: (#C #S #D #I) 37 9 5 1 4 + seq. disc. tr. 2 Fval: I S S S S D S 2 Eval: I S S S S D S S S D S S S D S S S S D S
<pre>23 24 id: (sw_4854_b-009) 25 Labels: <> 26 File: sw_4854 27 Channel: b</pre>
28 29 REF: well I (don-) i DO NOT CAMP NEAR AS MUCH AS WE USED TO WE USED TO go *** TO THE LAKE all the time (%hesitation) WE (USE-) WE ALL SKI and everything *** WE USED TO ALL GO TO THE LAKE ALL the TIME AND MY PARENTS
31 Scores: (#C #S #D #I) 20 22 20 2 32 HYP: well * i ** *** **** ** **** ** *** ** ** ** **
34 35 Scores: (#C #S #D #I) 42 9 11 0 36 HYP: well i i ** *** CAMPED near as much as we used to we **** ** FEEL LIKE all the time we we all *** SCAN everything ** **** ** THESE DOGS OVER LIKE all the time and my parents had a cabin IN t 37 Eval: D D D S S
38 39 Scores: (#C #S #D #I) 42 10 10 0 40 HYP: well * i ** THINK CAMPED near as much as we used to we **** ** FEEL LIKE all the time we we all SCREAM and everything ** **** ** YOU STILL HAVE LIKE all the time and my parents had a cabin I 41 Eval: D D S S S D D D D S S S S S S S S S S
42 43 Scores: (#C #S #D #I) 47 8 7 0 44 HYP: well * i ** THINK CAMPED near as much as we used to we used to go to *** lake all the time and my parents had a cabin IN 45 Eval: D D S S D D D D S S S S S S S S S S S

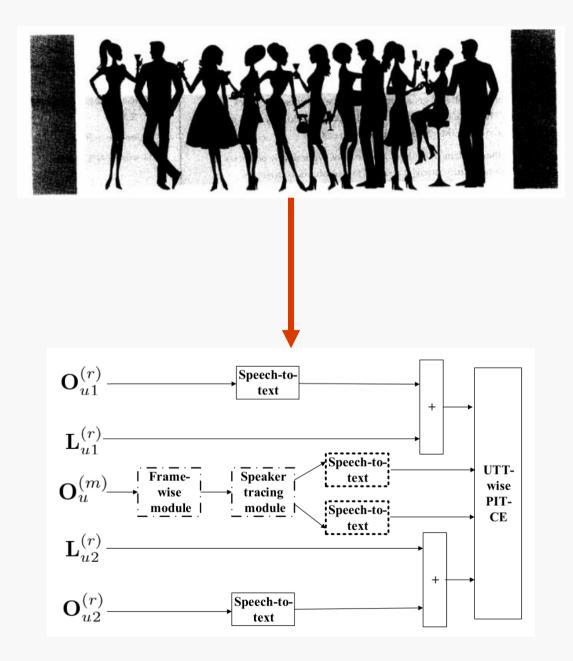
Experiments – Example 150hrs (F-F)

- Clean ASR (90+WER)
- 1 PIT-CE
- 2 Transf.
- 3 +CNN
- 4 +seq. disc. tr.


```
1 id: (sw 4776 a-006)
2 Labels: <>
  File: sw 4776
 Channel: a
  REF: i just go WALKING and i usually TRY TO
                                                 go for about an hour (e-) AND i have tried DOING IT EVERY DAY but i mean some times i do not even do it once during the week but you know MOST OF THE TIME i TRY to get out there
                                                                  1 PIT-CE
8 Scores: (#C #S #D #I) 38 5 8 0
  HYP: i just go ON
                        and i usually *** THOUSAND go for about an hour
                                                                        *** i have tried ***** ** TO NAME but i mean some times i do not even do it once during the week but you know **** ** *** **** i LIKE to get out there
10 Eval:
                 S
                                     D S
                                                                        D
                                                                                       D D S S
                                                                                                                                                                              11
                                                                                 2 Transf.
12 Scores: (#C #S #D #I) 39 6 6 2
                                                                           *** i WOULD TRY doing it every day but i mean some times i do not even do it once during the week *** you know **** ** *** WE WE try to get out there
13 HYP: i just go OUT TO EAT
                               and i usually *** HAVE go for about an hour
                                           D S
                                                                           D S S
14 Eval:
                 TTS
                                                                                                                                                                     D
                                                                                                                                                                                 D D D S S
15
                                                                                         3
                                                                                                +CNN
16 Scores: (#C #S #D #I) 42 5 4 1
                                                                        and i **** tried doing it every day but i mean some times i do not even do it once during the week but you know **** ONCE the **** SAME TRYING to get out ther
17 HYP: i just go OUT AND
                            and i usually *** HAVE go for about an hour
                                                                                                                                                                                          D S S
18 Eval:
                 T S
                                        D S
                                                                              D
                                                                                                                                                                             n s
                                                                                                           +seq. disc. tr.
                                                                                                 4
19
20 Scores: (#C #S #D #I) 41 8 2 0
21 HYP: i just go WATCHING and i usually DO NOT go for about an hour
                                                                     and i **** tried doing it every day but i mean some times i do not even do it once during the week but you know **** ONCE IN SOME WAY TRYING to get out there
22 Eval:
                 S
                                      5 5
                                                                          D
                                                                                                                                                                         D 5 5 5 5 5 5
24 id: (sw 4854 b-009)
25 Labels: <>
26 File: sw 4854
27 Channel: b
29 REF: well I (don-) i DO NOT camp NEAR as much as we used to we used TO GO to THE LAKE all the time (%hesitation) we (use-) we all SKI AND everything WE USED TO ALL GO TO THE LAKE ALL THE time AND my parents HAD a CABIN AT THE
31 Scores: (#C #S #D #I) 36 10 16 0
                                                                                                                     we all STAY IN everything ** **** ** *** ** *** YOU STILL ILLEGAL time *** my parents GOT a ***** ** **
32 HYP: well *
                    i ** THINK camp HERE as much as we used to we used ** ** to *** LEAVE all the time
                                                                                                                           s s
                                                                                                                                             D D D D D D S S S
33 Eval:
            D
                      DS
                                   S
                                                                          D S
                                                                                                                                                                                          D
                                                                                                                                                                                                       S
                                                                   D D
                                                                                                                                                                                                             D
                                                                                                                                                                                                                  D D
35 Scores: (#C #S #D #I) 42 10 10 0
36 HYP: well *
                     i AM A camp near as much as we used to we **** ** ** FEEL LIKE all the time
                                                                                                                    we all *** SCAN everything ** **** ** *** THESE DOGS ARE LIKE all the time and my parents had a cabin IN the l
                                                                                                           we
                                                                                                                         D S
                                                                                                                                           37 Eval:
           D
                      5 5
                                                            D D D D S S
                                                                                                                                                                                                                S
39 Scores: (#C #S #D #I) 40 9 13 0
  HYP: well *
                    i ** THINK camp near as much as we used to we **** ** ** FEEL LIKE all the time
                                                                                                            **
                                                                                                                     we *** WILL SCAN everything ** **** ** *** ** THESE DOGS LIKE all the time and my parents had a cabin ON the
                      DS
                                                              D D D D S S
                                                                                                            D
                                                                                                                        D S S
                                                                                                                                              D D D D D S S S
                                                                                                                                                                                                                 S
41 Eval:
          D
42
43 Scores: (#C #S #D #I) 46 9 7 0
44 HYP: well *
                    i ** THINK CAMPED near as much as we used to we used to go to *** lake all the time
                                                                                                                      we all *** SCAN everything ** **** ** WITH THESE DOGS OVER LIKE all the time and my parents had a cabin IN
                                                                                                             we
                                                                                                                            D S
                                                                                                                                              D D D S S S S S
45 Eval:
            D
                      DS S
                                                                             D
```

Conclusion

- Acoustics
 - Modular Initialization 4%
 CNN 10%
 - Transfer Learning Based Joint Training 20%
 - Temporal Correlation Modeling 8%
- Linguistics
 - Multi-outputs Sequence Discriminative Training 8%
 - Integrating Language Model in Assignment Decision 4%



Future works

- Better Modular Initialization
 - e.g. DPCL, beamforming with spatial features
- Sequence Modeling
 - e.g. CTC
- Linguistic Information
 - Joint decoding
 - Joint AM & LM modeling (end-to-end)

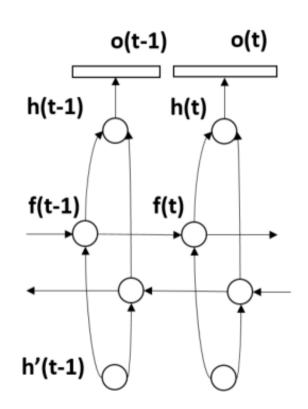
Future works

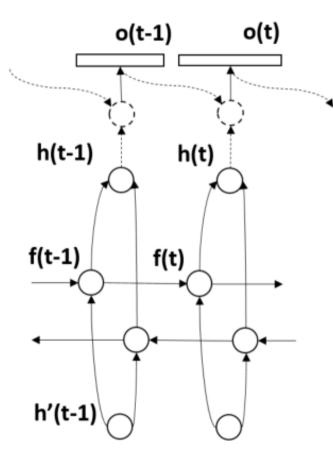
- Better Modular Initialization
 - e.g. DPCL, beamforming with spatial features
- Sequence Modeling
 - e.g. CTC
- Linguistic Information
 - Joint decoding
 - Joint AM & LM modeling (end-to-end)
- Multi-channel and front-end

• 2000 hrs swb+fsh \rightarrow 2 weeks \rightarrow approaching 20%?

Backup materials

Temporal correlation modeling in BLSTM





(a) BLSTM

(b) Temporal Correlated BLSTM